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On the Euler Scale and the
µEuclidean Integer Relation Algorithm

Hermann Heßling

Berlin University of Applied Sciences (HTW), D–12459 Berlin, Germany

The equal–tempered 10–tone scale en/10 (n = 0,±1,±2, . . . ), using the Euler number
e = 2.71828 . . . as a pseudo–octave is shown to approximate well the prime number
harmonics 2, 3, 5, and 11. Equal–tempered scales simultaneously approximating certain
frequency ratios, shall be called tonal scales.1 Some of the properties of the Euler scale
and its relation to other tonal scales are explored.

The general mathematical problem of identifying tonal scales can be solved by inves-
tigating integer relations, using the µEuclidean algorithm, a modification of the PSLQ
algorithm. If restricted to two numbers the µEuclidean algorithm goes over identically
into the ancient Euclidean algorithm, contrary to the PSLQ algorithm. The µEuclidean
algorithm is able to solve a certain class of higher dimensional integer relations where
the PSLQ (not the PPSLQ) algorithm breaks down. In general, the µEuclidean algo-
rithm finds smaller integer relations than the (P)PSLQ algorithm.

In an appendix a simple alternative procedure is presented for determining tonal
scales based on continued fractions.

Keywords: equal–tempered scales; integer relations; continued fractions; harmonics;
intervals

1. Introduction

Contemporary microtonal composers are intrigued by principles that can be used to create novel
music. In the construction of musical scales a traditional principle is to seek for a concurrence of
structure and consonance. The simplest structural type of musical scales are sequences of pitches
or equivalently, frequencies. Other types of musical scales are beyond the scope of this paper.
The concept of consonance is often used by musicians with the intention to simultaneously
characterize perceptual and musical properties of sounds and to thereby bridge the psycho–
physical and musical levels in search of new aesthetic phenomena. The psycho–physical concept of

hessling@htw-berlin.de
1In this particular meaning, the term is used among microtonal composers.
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sensory dissonance is based on dissonance curves which are continuous functions of the frequency
ratio between two sounds with fixed timbres. The timbres of the sounds have a significant impact
on the shapes of these curves. Hermann von Helmholtz demonstrated that the dissonance curves
of harmonic sounds have local minima at simple frequency ratios.

The musically motivated perception and evaluation of consonance changed in the course of time.
For example, more and more simple fractions of the fundamental frequency were considered as
consonant which, finally, motivated Schönberg to develop his concept of the ‘emancipation of
dissonance’ [1].

The usual equal–tempered scale takes the octave as the fundamental unit and divides it into
12 parts according to the formula

f = f0 2n/12, n = 0,±1,±2 . . . ,

where f0 is some fundamental frequency, e.g. f0 = 440 Hz. The numbers n are called intervals.
The octave is characterized by the interval n = 12, the unison by n = 0.

Almost hit consonances are related to nearly integer numbers n. E.g. the 3rd harmonic (f/f0 =
3) corresponds approximately to the number n = 19 since 12 log2 3 = 19.02 . . . . The fifth (f/f0 =
3/2) is the difference between the 3rd and 2nd harmonic and is well represented by the interval
n = 7, as follows from 12 log2(3/1)− 12 log2(2/1) = 12 log2(3/2) = 7.02 . . . .

The Bohlen–Pierce scale [2], [3]

f = f0 3n/13, n = 0,±1,±2 . . .

is a non–octave scale. The 3rd harmonic is represented exactly by the integer valued interval n =
13. Pierce called the frequency ratio 3/1 a tritave. The exponent n/13 is fixed by the condition
that the 5th harmonic can be approximated by a ‘simple’ ratio in the exponent. Indeed log3 5 =
6
13 × 1.007 . . . Surprisingly the Bohlen–Pierce scale yields also an excellent approximation of the
7th harmonic as can be read off from log3 7 = 10

13 × 1.003 . . . . However, there is a price to be paid
as octaves are imperfectly represented due to 13 log3 2 = 8.202 . . . or log3 2 = 8

13 × 1.025 . . . .
For the current status about the research on the Bohlen–Pierce scale see [4]. At this conference

the first Bohlen–Pierce panflute [5] and the Bohlen–Pierce soprano clarinet [6] were presented.
Within the well–tempered scale the major third and the harmonic seventh are rather poorly

approximated by integer values of n because 12 log2(5/4) = 3.86 . . . and 12 log2(7/4) = 9.69 . . . .
In the composition ‘Partch Harp’ for microtonal acoustic harp and microtonal synthesizer [7],

the non–octaving scale

f = f0 1.9560685n/12, n = 0,±1,±2 . . .

is used. This choice yields nearly exact integer representations of the major third and the har-
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monic seventh2

5
4

= 1.95606853.991.../12,
7
4

= 1.956068510.009.../12

by the intervals 4 and 10.3 The octave is 38 cents short [1200 log2 s cent = 1162 cents] and the
fifth 24 cents short [1200 log2 s

7/12 cent = 678 cents = (702 − 24) cents]. The deviations are
well audible. For octaves, even very small deviations of only 1 or 2 cents may be recognized as
distuned. The overall tuning period of the harp are true octaves (2/1), but within every octave,
the intervals are tempered according to the ‘reduced octave’ (s/1) and, thus, the last step of
the scale is enlarged by a ‘Stahnke comma’. In contrast, the synthesizer is completely tuned
in ‘reduced octaves’ (s/1). The tunings drift apart, the higher or the lower the register is. The
resulting harmonic strangeness contributes significantly to the very special sound of Partch Harp.
The well–tuned major thirds and harmonic seventh are noticeable in a unique way and add a
most remarkable flavour to the piece.

The Bohlen–Pierce scale can be understood as a fractional 12–tone equal–temperament (ET)
scale. Because of the good approximation 219/12 = 2.9966 . . . ' 3, a Stahnke–like representation

3
n

13 ≈ (219/12)
n

13 = 2
19
13

n

12 = 2.7540 . . .
n

12

is obtained.4

Despite these mathematical manipulations, it must not be forgotten that the acoustic properties
of a tonal scale do not depend on its mathematical representation but on its harmonic content.

The scales developed by Bohlen–Pierce and Stahnke raised our interest in the problem of
tuning non–octave intervals. More specifically, we are looking for algorithms determining intervals
subject to several simultaneous ‘constraints’. The case of two constraints is well understood.
Using the theory of continued fractions it is easily shown that fifths are better approximated
within an octave if the octave is subdivided not into 12 but 41 equidistant intervals. From a
conceptual point of view the Stahnke scale can be derived within the traditional theory since it is
determined by only two constraints, namely to find good approximations for the major third and
the harmonic seventh. The Bohlen–Pierce scale is beyond the classical realm as it is characterized
by three intervals (3/1, 5/1, 7/1). In the next section we present a scale characterizable by
even 5 constraints. Actually, we found this example just by chance. The remaining part of this
article is mainly devoted to the problem, how multi–dimensional constraints may be explored
systematically.

2The Stahnke scale can be derived from the transcendental equations 5/4 = s(4−µ)/12 and 7/4 = s(10+µ)/12.
They are solved by the numbers

s =
(

7
4

)6/7(5
4

)6/7

= 1.95606847 . . . , µ = 7
ln(7/4)− ln(5/4)
ln(7/4) + ln(5/4)

− 3 = 0.00898 . . .

The solution µ is a transcendental number contrary to the number s which is simpler (algebraic number).
The number µ characterizes the deviation of the intervals 4 and 10 of the Stahnke scale from the frequency
ratios 5/4 and 7/4, respectively. The deviation corresponds to 1200 log2 s

µ/12 cent = 100µ log2 s cent ≈
0.869 cent. The smallness of µ is a kind of a magic.
3The 6th harmonic corresponds nicely to the interval n =32, see Table 1.
4The relevant equation 3 = 2x can be solved by a simple ratio x if the continued fraction expansion
log2 3 =

{
1
1 ,

2
1 ,

3
2 ,

8
5 ,

19
12 ,

65
41 , . . .

}
is considered.
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2. Euler scale

The Euler number e = 2.71828 . . . obeys the equation 0 = 1 + eiπ which is built of the most
important mathematical numbers (i =

√
−1 is the imaginary unit solving 0 = 1 + i2 ).

The exponential function ex can be represented by an infinite series

ex = 1 +
x

1
+

x2

1 · 2
+

x3

1 · 2 · 3
+ . . .

The series is rapidly converging, i.e. only a finite number of terms are needed in practice. For
example, if evaluated at x = 1 only the first 9 terms are sufficient to determine e to 5 decimal
places. The exponential function appears in many laws of nature.

To begin with we note

e7/10 ≈ 2.014, e11/10 ≈ 3.004, e16/10 ≈ 4.953, e24/10 ≈ 11.02.

In the appendix, it is shown that the exponents 7/10, 11/10, 16/10, and 24/10 are best approx-
imations of the 2nd, 3rd, 5th, and 11th harmonic

2 ' en2/N , 3 ' en3/N , 5 ' en5/N , 11 ' en11/N

by integer intervals n2, n3, n5, n11 and a common integer N .5

The Euler scale defined by

f = f0 e
n/10

appears to be a synthesis of the 12–tone ET scale and the Bohlen–Pierce scale. The 12–tone ET
scale yields extremely good approximations of the 2nd harmonic and the 3rd harmonic. The
Bohlen–Pierce scale represents well the harmonics 3, 5, and 7 (Table 1).

Upper partial tones corresponding well to integer intervals are marked in Table 1 by a star
(*). The column of the Euler scale shows the largest number of stars and is, in a sense, the most
‘harmonic’ scale. This is mainly due to the fact that the Euler scale is approximating well not
only the octave (2nd harmonic) but also the tritave (3rd harmonic) and, simultaneously, the
prime–number valued harmonics 5 and 11.

The 12–tone ET scale approximates well the prime number-valued harmonics 2 and 3. The
Bohlen–Pierce scale is approximating three prime number–valued harmonics (3, 5, 7).

If two harmonics are well approximated by two intervals, the product of the harmonics may
also correspond to an integer interval. The error of the product is the sum of the errors of both
intervals. See, for example, the interval n = 31 of the 12–tone ET scale that is the product of
the 2nd harmonic and 3rd harmonic.

However, it may happen that the resulting error is too large. Although the 4th harmonic is the
product of the 2nd harmonic with itself (4 = 2× 2), the interval n = 14 of the Euler scale is not
well approximated (no star) since the error of the 2nd harmonic (≈ −0.07) leads to an absolute
error of 0.14 which is beyond the cutoff value 0.1.6

5By doubling the number of subintervals (N = 20) also the 7th harmonic can be well represented as
e39/20 ≈ 7.029.
6Measures for estimating the approximation error of a tonal scale are also considered in Section 4 and in
the appendix.
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12–tone ET Bohlen-Pierce Stahnke Euler
f
f0

12 log2
f
f0

13 log3
f
f0

12 log1.9560685
f
f0

10 ln f
f0

1 0 * 0 * 0 * 0 *
2 12 * 8.20 12.40 6.93 *
3 19.02 * 13 * 19.65 10.99 *
4 24 * 16.40 24.79 13.86
5 27.86 19.04 * 28.79 16.09 *
6 31.02 * 21.20 32.05 * 17.91 *
7 33.69 23.03 * 34.80 19.46
8 36 * 24.61 37.19 20.79
9 38.04 * 26 * 39.30 21.97 *
10 39.86 27.25 41.18 23.02 *
11 41.51 28.37 42.89 23.98 *

Table 1. Relation between the overtone spectrum and intervals n for different scales.
Notes: A star (*) indicates an almost integer interval number n (with an absolute error below the cutoff
value < 0.1). For example, in the 12–tone ET (ET) scale the interval n = 19 corresponds almost identically
to the 3rd harmonic. (ln = loge is the natural logarithm.)

n en/10 1200 log2 e
n/10 f

f0
1200 log2

f
f0

Difference
(cent) (cent) (cent)

0 1 0 1/1 0 0
1 1.105 173 10/9 182 - 9
2 1.221 346 6/5 316 30
3 1.359 519 4/3 498 21
4 1.492 692 3/2 702 -10
5 1.649 866 5/3 884 -18
6 1.822 1038 9/5 1017 21
7 2.014 1212 2/1 1200 12
8 2.226 1385 2(10/9) 1382 3
9 2.460 1558 2( 5/4) 1586 -28
10 2.718 1731 2( 4/3) 1698 33
11 3.004 1904 2( 3/2) 1902 2

Table 2. Relation between intervals n of the Euler scale and frequency ratios f/f0.
Note: The last column shows the difference between the third and the fifth column.

A good approximation of harmonics out of ‘poor’ intervals may be realized because of a magic
cancellation of errors. An example is given by the interval n = 32 of the Stahnke scale: the ‘poor’
intervals n = 12, 20 are rather neutral representations of the 2nd and 3rd harmonics. As already
mentioned in the introduction the Stahnke scale was constructed to obtain an optimal approx-
imation of the ‘fractional’ harmonics 5/4 (fifth) and 7/4 (seventh). Thus, good approximations
to multiples of the fundamental frequency are possible just by chance.

The modified Stahnke scale 1.9560685n/30 splits the basic interval in 30 ET sections. It ap-
proximates the 2nd, 3rd and 7th harmonic very well, see Section 4 and the appendix.

More details on the interval structure of the Euler scale can be extracted from Table 2.
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The intervals n = 1, 2, . . . 7 correspond (up to differences of a few cents) to the frequency ratios
of the minor tone (10/9), minor third (6/5), fourth (4/3), fifth (3/2), major sixth (5/3), minor
seventh (9/5), and octave (2/1), respectively.

The interval n = 11 is just a tritave (2 cents up). In other words, the Euler scale divides
the duodecime into 11 equal steps, nearly.7 The intervals n=5 and n=6 are characterized by
uneven frequency ratios which appear also in the Bohlen–Pierce scale as can be read off from
log3(5/3) = 6.045 . . . and log3(9/5) = 6.955 . . . .

The 2nd interval (346 cents) is almost in the middle of the major third (386 cents) and the
minor third (316 cents). Triads consisting of the intervals n = 0, 2, 4 sound ‘neutral’, a little
closer to minor than major triads.

The Euler scale is quite similar to equiheptatonic scales in traditional African and oceanic
music where thirds are ‘neutral’ (between major and minor third and, in practice, fluctuating
approx. ± 20 cent around the mean), fourths and fifths are quite exact, sevenths are also ‘neutral’
and octaves are often somewhat stretched on purpose [8], [9].

The ’Are’are from the Solomon Islands create complex equiheptatonic music on panpipes. An
instrument maker starts a tuning process by measuring the length of a pipe with his fingers.
Octaves are generated by doubling the size of a reference pipe or by cutting it in half. For the
fine–tuning he uses his hearing while playing melodies and transposing them to different pitches
[8]. As a measuring device the human ear has a much higher resolution power than a finger.8

The Euler number can be extracted from traditional African and oceanic music to an accuracy
of a few per cent.

To show this assertion, we firstly note that from the tritave of the Euler scale the estimate

e ' (21904/1200)10/11

can be derived (see the third entry in the last row n=11 of Table 2).
There is no perfect tuning. Instruments in African music are considered as tuned in unison

even if there are tuning fluctuations of up to a quarter tone [9]. Let us, therefore, assume that
a traditional African instrument is tuned according to the Euler scale with a tuning error of
± 50 cents per interval. Then, we obtain for the accuracy of determining the Euler number using
this instrument

enon−European ' (2(1904±50)/1200)10/11 ' 2.647 . . . 2.790 ' e(1± 0.026)

showing that the relative error is ∼2.6 %. Clearly, the smaller the tuning error the smaller the
relative error. If the tuning error is only 10 cents, then, the relative error in extracting e reduces
to 0.5 %. Moreover, the relative error is smaller, the higher the chosen interval. In light of this
property, the assumption of a fixed tuning error per interval may not be fully realized in practice
over the whole frequency range of interest.

The number π = 3.14159 . . . characterizing the ratio of the circumference to the diameter
of a circle, is transcendental like the Euler number. From the bible, the integer approximation
πbible ' 30 cubit / 10 cubit = 3 can be extracted. A value of 3 was also used by the Babylonians
and in ancient China. Since πbible ' π(1−0.045) the relative error of the ancient value is ∼ 4.5%

7The 10–tone ET Euler scale and the 11–tone ET Bohlen–Pierce scale differ only weakly. The equation
3 = ex can be solved by a ‘simple’ ratio x if the continued fraction expansion ln 3 '

{
1, 11

10 ,
78
71 , . . .

}
is considered. Thus, 3n/11 ' e(11/10)(n/11) = en/10. The 11–tone ET Bohlen–Pierce scale was already
suggested in [2], footnote 26.
8Traditional Thai instruments are also tuned equiheptatonically, see [10] Chapter 15.
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which is, quite remarkably, of the same order magnitude as the relative error just obtained
for enon−European.

The number π can be determined by looking at circles. Such as the octave is a fundamental
building block for periodic scales, the Euler number may musically be explored within the context
of pseudo–octaves. Both numbers π and e, characterize periodic objects even though in different
sensual spaces, π can be seen, e be heard.

3. The µEuclidean algorithm

Continued fractions9 are used to find ‘best approximations’ for the ratio of two real numbers
r1, r2 by a ratio of two integers m1,m2

r1
r2
' m2

m1
,

where the distance of the integers from the origin is limited. By rephrasing the integer relation

r1m1 − r2m2 ' 0

is obtained.
The ancient Euclidean algorithm allows to find ‘small’ non–vanishing integers m1,m2. It is an

iterative algorithm based on the recursively defined numbers

rν+2 = rν −
⌊
rν
rν+1

⌋
rν+1, ν = 1, 2, 3 . . . ,

where brc is the floor function giving integer numbers by cancelling all digits after the decimal
point, e.g. b2.98c = 2. By inserting all previous iterations integers m1,ν ,m2,ν can be determined
such that a representation of the kind rν+2 = r1m1,ν − r2m2,ν is obtained. The numbers rν
decrease rapidly as ν increases since rν+2 < rν/2 for all ν > 1 which, in turn, follows from the
inequalities r − brc < r/2 for r ≥ 1 and brc ≤ r < brc + 1. If eventually rν+2 = 0 for some
ν > 0, the algorithm terminates and an integer relation is determined where rν+1 is the greatest
common divisor of r1 and r2.

The Euclidean algorithm and continued fractions are equivalent. Let the ratio r1/r2 be ap-
proximated by the n–th convergent, r1/r2 ' [k0, k1, k2, . . . , kn]. The integers coefficients kν and
the numbers rν of the Euclidean algorithm are related by kν = brν+1/rν+2c.

Finding integer relations for more than two real numbers

r1m1 + r2m2 + · · ·+ rkmk ' 0

by a ‘fast’ algorithm is surprisingly difficult and has a long history initiated by Euler and La-
grange. Several partial solutions were suggested, e. g. for n = 3 [11]. The Generalized Euclidean
Algorithm developed in 1977 was a breakthrough [12] and led eventually to the PSLQ algorithm
[13].

9Some properties of continued fractions are collected in the appendix.
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The PSLQ algorithm is not identical to the Euclidean algorithm if restricted to the ‘trivial’
case of two real numbers (k = 2). This is due to the fact that the nearest integer function
bre = br + 1/2c is used instead of the floor function brc.

This detail is of no relevance if identifying an integer relation for given real numbers is the main
problem. However, we are interested in approximating real numbers by fractions and familiar ‘best
approximations’ may not be recovered by the PSLQ algorithm.

Let us consider the traditional problem of approximating fifths characterized by the frequency
ratio f/f0 = 3/2. Within the 12–tone ET scale the ratio is well approximated by the 7th interval
up to 0.3 % since log2(3/2) = 7

12 × 1.0028 . . . . Within the 41–tone ET scale, the fifth is known
to be approximated even better. The characteristic number log2(3/2) can be approximated by
the convergents [0, 1, 1, 2, 2] = 7/12 and [0, 1, 1, 2, 2, 3] = 24/41. The PSLQ algorithm finds
the approximate integer relation 12 · log2(3/2) − 7 · 1 = 0.020 · · · ' 0 but not the improved
approximation 41 · log2(3/2)− 24 · 1 = −0.017 · · · ' 0.

We present a modified PSLQ algorithm, called µEuclidean algorithm, that goes over into the
Euclidean algorithm for k = 2, i.e. all approximations of the classical continued fraction expansion
are recovered. The general strategy of the PSLQ algorithm is taken over, but an additional
mirroring transformation is added in each iteration step. The proofs of the PSLQ algorithm
rely in an essential way on the property of the nearest integer function to approximate real
numbers ‘optimally’ by integer numbers since the distance 0 ≤ |r − bre| < 1/2 is smaller, in
general, than the distance 0 ≤ r − brc < 1. It turns out that the main assertions of the PSLQ
algorithm survive. Also within the µEuclidean algorithm, the relevant intermediate numbers can
‘optimally’ be approximated by integer numbers, if the invariance of the PSLQ algorithm under
mirror transformations is combined with the property that for any real number r the inequality
0 ≤ r − brc ≤ 1/2 or the inequality 0 ≤ −r − b−rc ≤ 1/2 holds.

The Generalized Euclidean Algorithm replaces the single integer relation10 〈r|m〉 ' 0 by a
total of k − 1 non–integer equations written as 〈r|H = 0 where H is a lower trapezoidal matrix
whose column vectors span a hyperplane orthogonal to the vector |r〉. The matrix H is iteratively
replaced by a sequence of matrices H(ν) = (B(ν))−1HQ(ν) where B(ν), Q(ν) (ν = 1, 2, . . . ) are
matrices that are constructed so that the norm ‖H(ν)‖ is reduced as ν increases.11 The matrices
B(ν) are integer valued and obey detB(ν) = ±1, i.e. the inverse matrices B(ν)−1

are also integer
valued. The matrices Q(ν) are orthogonal, i.e. they do not modify the scalar product between
vectors. Q(ν) are used in the algorithm to rotate (detQ(ν) = +1) the row vectors of H(ν) so
that H(ν) remains lower trapezoidal. If one of the components of 〈r|B(ν) is zero for a finite ν,
an integer relation |m〉 is stored in the corresponding column of B(ν). If the algorithm does not
terminate up to a certain ν, a ‘small’ integer relation does not exist and a lower bound for the
smallest length of |m〉 can be determined from the norm of the matrix H(ν).

There are many matrix norms.12 Of relevance in the following is the Euclidean row norm ‖·‖∞,2

10Dirac’s bra–(c)ket notation is used. The scalar product between a bra vector 〈u| = (u1, u2, . . . , uk) and
a ket vector |v〉 = (v1, v2, . . . , vk)T reads 〈u|v〉 = u1v2 + · · · + ukvk. In our setting, a bra vector is the
transpose of a ket vector, 〈u| = |u〉T .
11In the PSLQ algorithm the relevant norm (maxi|H(ν)

ii |) is reduced monotonically, but not strongly
monotonic.
12Let p ≥ 1 be a real number. The p–norm of a k–dimensional vector |r〉 = (r1, r2, . . . , rk)T is defined as
‖|r〉‖p = (|r1|p + |r2|p + · · ·+ |rk|p)1/p. The case p = 2 corresponds to the Euclidean distance measure,
‖|r〉‖2 =

√
〈r|r〉. In the limit p→∞ the maximum norm is obtained, ‖|r〉‖∞ = max1≤i≤k |ri|. Let q > p,

then ‖|r〉‖q ≤ ‖|r〉‖p i.e. the topology induced by the p–norm is finer than the topology induced by the
q–norm.
The pq–norm of a (k × l)–matrix A can be defined as ‖A‖p,q = max|x〉6=0 ‖A|x〉‖p/‖|x〉‖q where |x〉 is an
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which for a matrix A reads ‖A‖∞,2 = maxi
√∑

j Ai,j
2.

In the PSLQ algorithm the lower trapezoidal matrix H is defined by the k×(k−1) components

Hi,j =

0 if i < j
si+1/si if i = j
−rirj/(sj+1sj) if i > j

,

where s2j =
∑k

i=j r
2
i are partial sums of squares of the input numbers. The absolute value of

the components of H are restricted to the unit interval, more specifically 0 < Hk−1,k−1 < · · · <
H2,2 < H1,1 < 1 and −1 < Hi,j < 0 for all i > j. Let 〈Hi| be the i-th row vector of H. Then
〈Hi|Hi〉 = 1 − (ri/s1)2. If the input numbers are ordered downwards, r1 > r2 > · · · > rk > 0,
the lengths of the rows of H are ordered upwards and the row norm of H is given by the length
of the last row, ‖H‖∞,2 = 〈Hk|Hk〉1/2, and Hk−1,k−1 < |Hk,k−1|. The column vectors of H are
orthonormal, HTH = 1k−1.

Let |m〉 be a vector representing an integer relation, i.e. 〈r|m〉 = 0. Then for any invertible
matrix B and any orthogonal matrix Q, the following chain of relations holds

1 ≤ ‖B−1|m〉‖∞
= ‖B−1HHT |m〉‖∞
≤ ‖B−1H‖∞,2 ‖HT |m〉‖2
= ‖B−1H‖∞,2 ‖|m〉‖2
= ‖B−1HQ‖∞,2 ‖|m〉‖2,

where we used that ‖HT |m〉‖2 = 〈m|HHT |m〉1/2 = 〈m|m〉1/2 = ‖|m〉‖2 as HHT = 1k −
|r〉〈r|/〈r|r〉. Consequently, there is a lower bound for the Euclidean length of the integer re-
lation

‖|m〉‖2 ≥
1

‖H(ν)‖∞,2
.

This inequality is remarkable. It was used, for example, to find previously unknown relations
between certain irrational numbers [14].

Just like the PSLQ algorithm we introduce a reducing matrix D with the difference that the
nearest integer function b·e is replaced by the floor function b·c. D is determined recursively
while updating H. Initially set D = 1k and H ′ = H and fix a tiny real number ε > 0 to
regularize numerical instabilities. For i = 2, . . . , k [step 1], for j = (i − 1) . . . , 1 [step −1] set
q = b(H ′i,j + ε)/H ′j,jc, for m = 1, . . . , j [step 1] redefine H ′i,m → H ′i,m − qH ′j,m, and for
m = 1, . . . , k [step 1] redefine Di,m → Di,m − qDj,m.

The reducing matrix D is lower trapezoidal whose elements are integer with Di,i = 1. The
off–diagonal matrix elements of H ′ = DH are smaller than the diagonal elements of H,

|H ′i,j | < |H ′j,j | = |Hj,j |, for all i > j (1)

l–dimensional vector. Clearly, ‖A|x〉‖p ≤ ‖A‖p,q‖|x〉‖q.
Let 1/p + 1/q = 1. Then ‖A‖∞,p = max1≤i≤k ‖〈ai|T ‖q where 〈ai| is the i–th row of the matrix A. The
assertion follows from the Hólder inequality, |〈x|a〉| ≤ ‖|x〉‖p‖|a〉‖q if 1/p+ 1/q = 1.
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by virtue of the inequality |x− bx/ycy| < |y|.13

The reduction of the off–diagonal elements H ′i+1,i can be improved. Let us introduce two
matrices S = diag(s1, s2, . . . sk−1, 1) and S′ = diag(s1, s2, . . . sk−1) where si = ±1. Set initially
sk−1 = sign(Hk,k−1).14 The remaining si are determined recursively. For i = k − 2, . . . , 1 [step
−1] solve sisi+1 = sign[sin(2πHi+1,i/Hi,i)]. (The recursion is well–defined since Hi,i > 0 for
all 1 ≤ i ≤ k − 1 and for each iteration step.) Then, the secondary diagonal elements of the
transformed matrix DSHS′ obey

|(DSHS′)i+1,i| ≤
1
2
|Hi,i| (2)

for all i < k − 1.15 The mirror transformation induced by the matrices S, S′ is considerably
improving the convergence behaviour of the µEuclidean algorithm introduced below.16

The proof is based on the fact that a mirrored number −r fulfils 0 ≤ −r−b−rc ≤ 1/2 whenever
a real number r can only ‘badly’ be approximated by an integer number, 1/2 ≤ r − brc ≤ 1.
The action of the reducing matrix D on the secondary diagonals of H is given by (DH)i+1,i =
Hi+1,i − bHi+1,i/Hi,icHi,i. The matrices S, S′ induce mirror transformations. The diagonals Hi,i

are left invariant and the secondary diagonals Hi+1,i are multiplied with the proper signs, as
(SHS′)i,j = sisjHi,j . �

Let Pr be a k–dimensional unit matrix whose rows r and r + 1 are interchanged. Pr is a
permutation matrix, P 2

r = 1k. It is used to transpose the rows r and r + 1 of the matrix H.
The matrix

Qr =


1r−1

β/δ λ/δ
λ/δ −β/δ

1k−2−r

 , δ =
√
β2 + λ2

is orthogonal. Let β = Hr+1,r and λ = Hr+1,r+1. The transformation H → PrHQr maps a
lower trapezoidal matrix H into a lower trapezoidal matrix. The diagonal elements of PrHQr
are positive since H is a lower trapezoidal matrix with positive diagonal elements and since Qr
is the product of a rotation and a mirror transformation (detQr = −1).

The PSLQ algorithm breaks down for a certain class of integer relations due to a phenomenon
not discussed before in the literature to the best of our knowledge.17

13Without the rounding operation, i.e. for q = H ′i,j/H
′
j,j , the transformed matrix H ′ would have been

simply diagonal since then DH = diag(H11, . . . ,Hk−1,k−1).
14sign(x) = 1 for x > ε and sign(x) = −1 else, where ε > 0 is a tiny real number.
15The inequality does not hold for i = k − 1 although the matrices S, S′ can easily be modified to cover
also this case. However, then the direct contact to the ancient Euclidean algorithm (k=2) is lost. But this
detail is of no significant relevance as the Euclidean algorithm is converging fast, since rν+2 < rν/2 as
already mentioned.
16The inequality (2) can be extended to all off–diagonals by generalizing the mirror transformation
implicitly: in the definition of the reducing matrix D the definition of q needs to be replaced by
q = (H ′i,j + ε)/H ′j,j ; if(q − bqc ≤ 1/2){q → bqc}; else{q → −b−qc};. Then, the contact to the an-
cient Euclidean algorithm is lost, however, this deficiency can be repaired by using the q–replacement not
for i = k, j = k − 1. Although in this case, the µEuclidean algorithm is (almost) equivalent to the PSLQ
algorithm with respect to the convergence behaviour, the matrix norm of H is also not decreasing strongly
monotonic, see footnote 11.
17The phenomenon does not occur in the parallelized PSLQ (PPSLQ) algorithm [14] as its initial phase
is modified essentially compared to the initial step of the PSLQ algorithm. We thank thank D. H. Bailey
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The algorithm cannot be applied if the input number rk−1 is an integer multiple of rk and, in
the case k > 2, the parameter γ is sufficiently large.18

Proof Let rk−1 = nrk (n = 1, 2, 3, . . . ). The essential off–diagonal element Hk,k−1 vanishes
already after the initialization procedure of the PSLQ algorithm, since initially Hk−1,k−1 =
rk/sk−1 and Hk,k−1 = −rk−1/sk−1 and, consequently, q = bHk,k−1/Hk−1,k−1e = b−rk−1/rke
= −n, i.e. at the end of the initialization procedure where a reduction operation D is applied,
Hk,k−1 is replaced by (DH)k,k−1 = Hk,k−1 − qHk−1,k−1 = −rk−1/sk−1 + nrk/sk−1 = 0.

Let γ be sufficiently large. Then, γk−1Hk−1,k−1 ≥ γiHi,i for all 1 ≤ i < k. Consequently, the
last two rows of H are transposed in the exchange step of the PSLQ algorithm with the result
that now one of the diagonals of H is vanishing. The following reduction step in the main loop
is not defined as the calculation of q = bHk,k−1/Hk−1,k−1e suffers from a division by zero. �

For example, the trivial integer relation m1 · 1 + m2 · 1 = 0 associated to the input numbers
r1 = r2 = 1, cannot be solved by the PSLQ algorithm. A different counter example is given by
the integer relation m1 · 3 +m2 · 2 +m3 · 1 = 0 and γ > 5/

√
14.

The PSLQ algorithm can be protected against this shortcoming by avoiding a reduction oper-
ation within the initial phase, as proposed by the following algorithm.

Moreover, the ordering of the reduction step and the exchange step in the main loop of the
(P)PSLQ algorithm have to be interchanged to avoid a flaw in finding ‘small’ integer relations,
as is explained below.

The µEuclidean algorithm consists of the following steps.

(0) Initialisation step. Calculate H from the numbers r1, r2, . . . , rk, set B = 1k, and fix a
constant γ >

√
4/3 and a tiny constant ε > 0.

(1) Reducing step. Replace H by DH and B by BD−1.
(2) Transposition step.

Select an integer number r such that γr|Hr,r| ≥ γi|Hi,i| for all 1 ≤ i ≤ k − 1. Replace H
by PrH and B by BPr.
If r < k − 1, make H lower trapezoidal by replacing H by HQr.

(3) Mirroring step. Replace H by SHS′ and B by BS.
(4) Terminating step. The steps 1–3 are repeated unless one of the diagonals elements of H is

vanishing, Hk−1,k−1 < ε, or the maximum number of iterations have been carried out.

The lower bound on the parameter γ makes the transition step compatible with the matrix
norm of H, just like for the PSLQ algorithm.

Proof Let the norm of H after the reducing step be given by the first row, ‖H‖2∞,2 = 〈H1|H1〉 =
α2. The (square of the) length of the second row obeys 〈H2|H2〉 = H2

21 + H2
22 ≤ α2/4 + α2/γ2

due to the previous mirroring step (i.e. the inequality is valid for all iterations of the main loop
but the first, in general). A permutation P1 is performed in the transition step if the length of
the second row of H is smaller than the norm of H, α2/4 + α2/γ2 < α2, i.e. if γ >

√
4/3. �

The essential assertions about the PSLQ algorithm are also valid for the µEuclidean algorithm.
The proofs can be taken over nearly literally and are omitted here. The basic prerequisites of the
PSQL assertions are fulfilled also for the µEuclidean algorithm since, as already mentioned, due
to the mirror transformation of Step 3 the relevant off–diagonal elements of the reduced matrix

for pointing the difference out to us.
18A breakdown occurs if γ > (1 + r2k−1/r

2
k)1/2.
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H are sufficiently small, |(DSHS′)i,i−1| ≤ (1/2)|Hi,i|.
If the µEuclidean algorithm terminates after the νth iteration with H

(ν)
k−1,k−1 < ε, an integer

relation |m〉 is stored in the last column of B(ν) and

‖|m〉‖2 =
1∣∣∣H(ν)
k,k−1

∣∣∣
is the Euclidean length of the integer relation.

The proof is identical to the proofs of Lemma 5 and Lemma 10 in [13] up to trivial modifications
due to the property of the PSLQ algorithm to store the integer relation in the second–last column
of B(ν).

Let M be the length of the shortest integer relation of the numbers r1, . . . , rk (M =∞ in the
case of no integer relation). Then, there is an upper bound

‖|m〉‖2 ≤ γk−2M

for the integer relation |m〉 stored in the last column of the matrix B(ν). To discover ‘small’
integer relations the constant γ should be identified with the smallest of the allowed values,
γ =

√
4/3 + ε.

Proof If the µEuclidean algorithm terminates because an integer relation is found, the condition
γk−1Hk−1,k−1 ≥ γiHi,i for all 1 ≤ i ≤ k− 1, is fulfilled. Then, by adopting Theorem 2 of [13] the
assertion ‖|B(ν)

k 〉‖2 ≤ γ
k−2M can be extracted where in the last column |B(ν)

k 〉 of B(ν) an integer
relation is stored. �

The condition on the lowest diagonal element ofH to be ‘maximal’ (i.e. γk−1Hk−1,k−1 ≥ γiHi,i),
is essential for the upper bound. Contrary to the µEuclidean algorithm, the (P)PSLQ algorithm
may terminate without finding ‘small’ integer relations.

A simple counter example is given by the integer relation

3 ·m1 + 1 ·m2 + 6 ·m3 = 0.

The (P)PSLQ algorithm terminates after the first loop and finds the integer relations |ma〉 =
(0,−6, 1)T and |mb〉 = (1,−3, 0)T . On the other hand, the µEuclidean finds the integer relation
|mc〉 = (−2, 0, 1)T with the shortest length M = ‖|mc〉‖2 =

√
5. The solutions of the (P)PSLQ

algorithm obey

‖|ma〉‖2 =
√

37 > ‖|mb〉‖2 =
√

10 > γM =
√

6 + 2/3

i.e. both of them violate the upper bound γk−2M .19

Besides the different ordering of the reducing step and transposition step in the main loop,
the µEuclidean algorithm goes over into the PSLQ algorithm if (a) in the reduction step the

19There are infinitely many counter examples. Let, for example, α ≥ 3 be any integer. Applied to the
integer relation α ·m1 + 1 ·m2 + 2α ·m3 = 0, the (P)SLQ algorithm terminates after the first iteration and
finds |ma〉 = (0,−2α, 1)T and |mb〉 = (1,−α, 0)T . On the other hand, the µEuclidean algorithm identifies
the smallest integer relation |mc〉 = (−2, 0, 1)T . Since |mc〉 is independent of α, both solutions |ma〉, and
|mb〉 violate the upper bound the stronger the larger α.
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floor function b·c is replaced by the nearest integer function b·e, (b) in the transposition step the
matrix Qr is replaced by

Qr

1r
−1

1k−2−r

 ,

and (c) the mirroring step is omitted.
We implemented the µEuclidean algorithm in the software package Mathematica. It turns

out that the difference (a) may have a significant impact on the needed working precision if
numerically non–trivial integer relations are analysed.

The algebraic number α = 31/4−21/4 is a solution of the equation 1−3860α4−666α8−20α12 +
α16 = 0. The µEuclidean algorithm applied to the input numbers 〈r| = (1, α, α2, . . . , α16) finds
the integer coefficients of the polynomial equation after 1436 iterations with a working precision
of 285 decimal digits (where ε = 10−7). By skipping the mirroring step (3) of the algorithm and,
instead, using the implicit mirror transformation presented in footnote 16, the integer relation
is already found after 1426 iterations and, in doing so, the working precision can be reduced
remarkably to 174 decimal digits (which is even 3 % better than the PSLQ algorithm).20

4. ET tunings and integer relations

Integer relations can be used to construct systematically equal tempered scales that approximate
several frequency ratios simultaneously.

To begin with let us recall that within the usual equal–tempered scale there are relations
between the major third, the fifth and the octave, for example the relations

2 major thirds + 4 fifths = 3 octaves

1 major third + 8 fifths = 5 octaves

can be deduced from the relations 12 fifths = 7 octaves (‘circle of fifths’) and 3 major thirds =
1 octave (‘circle of thirds’). Taking into account that the third corresponds to the 4th interval,
the fifth to the 7th interval and the octave to the 12th interval, we obtain the integer relations

(−3) · 12 + 2 · 4 + 4 · 7 = 0

(−5) · 12 + 1 · 4 + 8 · 7 = 0.

To make contact with the µEuclidean algorithm, the integer relations are represented as a matrix

20For comparison we also implemented the PSLQ algorithm in Mathematica and found that a working
precision of 179 decimal digits is needed to find the solution (after 1426 iterations and with the termination
condition that the absolute values of one of the entries of 〈r|B(ν) or H(ν−1)

k−1,k is smaller than ε = 10−61).
A working precision of 85 decimal digits as mentioned in [13] could be confirmed by an implementation
of the PSLQ algorithm in the software package Maple [15]. The difference in the working precision should
be due to the special error propagation handling within Mathematica.
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equation  ∗ ∗ ∗12 4 7
∗ ∗ ∗

−5 ∗ −3
1 ∗ 2
8 ∗ 4

 =

∗ ∗ ∗0 ∗ 0
∗ ∗ ∗

 .

The stars (∗) mark currently undefined entries. It turns out that the matrix in the middle is just
the matrix B of the µEuclidean algorithm defined in the previous section, and the matrix on the
left–hand side is its inverse, i.e. the matrix equation is nothing but B−1B = 1. See the result (5)
where the ∗–entries of B−1 are replaced by numbers obtained from the µEuclidean algorithm.

We are looking for integer intervals n1, n2, n3, . . . , nk approximating well the harmonics or
frequency ratios p1, p2, p3, . . . , pk, i.e.

p1 ' an1/N , p2 ' an2/N , p3 ' an3/N , . . . pk ' ank/N

where the positive real number a characterizes a non–octave interval and the integer N the
number of its ET subintervals. We identify p1 = a or, equivalently, set n1 = N as determining
N is part of the problem. By taking logarithms, we obtain the relations

r1 = loga p1 '
N

N
, r2 = loga p2 '

n2

N
, . . . rk = loga pk '

nk
N
. (3)

To solve this multi–dimensional approximation problem, we explore the integer relation ansatz
〈r|m〉 = 1 ·m1 + r2m2 + . . . rkmk ' 0.

A solution N,n2, . . . , nk of the approximation problem (3) is given by any of the rows of the
matrix B(ν)−1

obtained from the µEuclidean algorithm.
To motivate this assertion we consider the decomposition

B(ν)−1
= |B(ν)−1

1 〉〈r|+ ∆(ν) (4)

where |B(ν)−1
1 〉 denotes the first column vector of B(ν)−1

. We analysed the decomposition for
cases showing no integer relation between the numbers r1, . . . , rk. In all cases it turned out that
∆(ν) tends to zero (rapidly) as the number of iterations ν is increased. However, the correction
term ∆(ν) does not decrease strongly monotonic to zero, only in the mean. The length of 〈r|B(ν)

decreases as the number of iteration ν increases. Consequently, one of the eigenvalues of B(ν) must
tend to zero (but does not vanish since detB(ν) = ±1) which, in turn, means that one eigenvalue
of B(ν)−1

increases. The eigenspaces of the eigenvalues of B(ν) are non–degenerate if there is
no ‘hidden’ symmetry between the input numbers. Given a decomposition (4) with a very small
correction ∆(ν) only one eigenvalue of B(ν)−1

is much larger than 1 and reads approximately
〈r|B(ν)−1

1 〉, the remaining (complex–valued) eigenvalues are close to zero (but none of them is
vanishing because of the constraint detB(ν)−1

= detB(ν) = ±1). �
In principle, the PSLQ algorithm may be used instead of the µEuclidean algorithm. However,

in the case of two input numbers (1, r) ‘best approximations’ obtained from continued fraction
expansions may not be recovered as already mentioned in the previous section.

A tonal scale should not depend on the ordering of its defining numbers. An approximative
solution 〈B(ν)−1

i | is called stable if it remains an approximative solution for any permutation of
the input numbers r2, . . . , rk (not necessarily at the same iteration ν).
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The position and the value of the first input number is fixed as r1 = 1 used to determine
the number N of ET subintervals. Thus, the case of two input numbers (k = 2) is stable per
definition reflecting the fact that the continued fraction expansion of r1/r2 = [k0, k1, k2, . . . ]
can be used to write down directly the continued fraction expansion of the transposed ratio as
r2/r1 = [0, k0, k1, k2, . . . ] for r1 > r2.

The quality of an iteration ν can be estimated by determining how well the real numbers N〈r|
are approximated by the integer numbers of the i–th row of B(ν)−1

.21 We take the extreme point
of view and consider the maximum norm of the difference 22

∆(ν)
i =

wwww|r〉 − 1
N

〈
B(ν)−1

i

∣∣∣Twwww
∞

= max
2≤j≤k

∣∣∣∣rj − 1
N
B(ν)−1

i,j

∣∣∣∣ .
To explain the second equality we note that the number N is just the first entry of the i–th

row of B(ν)−1
and the first entry of |r〉 is the number 1 (by assumption), i.e. the difference of the

first of the compared entries, Nr1 −B(ν)−1
i,1 , is always vanishing by construction.

Let us begin with the familiar approximation problem of the octave and the fifth, i.e.
〈r| = (log2/1(2/1), log2/1(3/2)) = (1, ln(3/2)/ ln 2) = (1, 0.585 . . . ). The third and fourth iter-
ation yield23

B(3)−1
=
(

12 7
−5 −3

)
, |∆(3)〉 =

(
1.96
18.0

)
cent

B(4)−1
=
(
−41 −24
12 7

)
, |∆(4)〉 =

(
0.48
1.96

)
cent

respectively. The numbers in the rows of B−1 agree with the well–known result that the fifth and
the octave can be best–approximated by N = 5, 12, or 41–tone ET scales where the fifth is given
by the 3rd, 7th, and 24th interval, respectively. It should be noted that the negative numbers in
some rows of B−1 are of no relevance since the numbers mi of an the integer relation are only
determined up to an overall sign. The larger the number N of ET subintervals the smaller are the
components of |∆(ν)〉, i.e. the better is the quality of the tonal scale. However, if N becomes very
large the tonal scale is of limited practical interest as adults can hardly distinguish successive
pitch differences below 5 cents, except for several pitches played at the same time (chord) where
interference effects allow for a much finer resolution.

21 All entries of a row are either positive of negative provided all input numbers have the same sign.
22In practical applications it is often convenient to represent errors in units of cent

∆(ν)
i = 1200 log2 a max

2≤j≤k

∣∣∣∣rj − 1
N
B(ν)−1

i,j

∣∣∣∣ cent.

An approximation is called reasonable if ∆(ν)
i < 25 cents, good if ∆(ν)

i < 15 cents, and impressive if
∆(ν)
i < 5 cents.

23The results of this section are obtained by an implementation of the µEuclidean algorithm in the
programming language JavaScript (see http://www.hessling.net/mEuclid.html). JavaScript has a working
precision of 16 decimal digits which is far more than sufficient for the calculations within this section (we
set γ =

√
4/3 + ε and ε = 10−10).
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Taking also the major third into account, i.e. 〈r| = (1, log2(5/4), log2(3/2)), we obtain

B(9)−1
=

 34 11 20
12 4 7
−53 −17 −31

 , |∆(9)〉 =

 3.93
13.69
1.41

 cent (5)

showing that the 12–, 34–, and 53–ET scales yield approximations of increasing quality. However,
the 12–tone ET scale is not stable, in harmony with the well–known problem that within this
scale thirds are only poorly realized. The 34–tone scale and the 53–tone scale are impressive
approximations.

In the 9–tone ET Chowning scale the octave corresponds the 13th interval since 9 logχ 2 =
12.96 . . . , see appendix for details about the non–octave scales analysed in this section. Inserting
the numbers 〈r| = (1, logχ 2) into µEuclidean algorithm and the PSLQ algorithm, respectively,
yields

B(3)−1

µEuclidean =
(
−7 −10
9 13

)
B(3)−1

PSLQ =
(
−2 −3
9 13

)
showing that the number of subintervals N = 9 is identified by both algorithms.

According to the continued fraction algorithm (see the appendix) also the 7–tone ET Chowning
scale is approximating octaves well (7 logχ 2 = 10.08 . . . ), however the 7–tone ET approximation
is not found by the PSLQ algorithm.

Representing the 3rd, 5th and 7th harmonics within the Bohlen–Pierce scale, i.e. 〈r| =
(log3 3, log3 5, log3 7) = (1, ln(5)/ ln(3), ln(7)/ ln(3)), yields

B(14)−1
=

 −13 −19 −23
101 148 179
−170 −249 −301

 , |∆(14)〉 =

6.53
1.97
1.25

 cent.

The quality of 13–tone ET scale (13–ET) is nearly impressive.
The 13–tone ET scale is also obtained and of the same quality if the characteristic ratios

3:5:7 of the Bohlen–Pierce scale, i.e. 〈r| = (log3(3/1), log3(5/3), log3(7/5)) = (1, ln(7/5)/ ln(3),
ln(5/3)/ ln(3)), are plugged into the µEuclidean algorithm

B(9)−1
=

 −13 −4 −6
−271 −83 −126
101 31 47

 , |∆(9)〉 =

6.53
0.06
1.25

 cent.

The quality of 101-ET is impressive.
Let s = 1.9560685 be the Stahnke number. The characteristic numbers 〈r| =

(1, logs(5/4), logs(7/4)) of the Stahnke scale lead to

B(9)−1
=

 6 2 5
1332 443 1111
−335 −118 −296

 , |∆(9)〉 =

0.869
0.003
0.324

 cent.

The 6–tone ET scale suggested by this method seems to be in conflict with the choice N = 12 of
the original Stahnke scale. However, after a multiplication with a factor of 2 the intervals of the
Stahnke scale are recovered, see Table A1. The intervals obtained here for the harmonic seventh
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(7/4) and the major third (5/4) agree with the results of the continued fraction expansion of the
appendix. The impressive quality |∆(9)〉1=0.869 is due to the very construction of the Stahnke
scale (see introduction).24

In the appendix, we show that the harmonics 2, 5, and 7 are approximated excellently by the
30–tone ET Stahnke scale. This result is also obtained here if the numbers 〈r| = (1, logs 2, logs 5,
logs 7) are plugged into the µEuclidean algorithm

B(19)−1
=


−30 −31 −72 −87
−331 −342 −794 −960
−28 −29 −67 −81
2327 2404 5582 6749

 , |∆(19)〉 =


1.40
0.15
8.63
0.02

 cent.

All four scales are stable. The 28–ET scale yields a good approximation.

The Euler scale approximates the 2nd, 3rd, 5th and 11th harmonics quite well as already shown
in Section 2. This result is confirmed here since for the real numbers 〈r| = (1, ln 2, ln 3, ln 5, ln 11)
we obtain

B(19)−1
=


10 7 11 16 24
−94 −65 −103 −151 −225
274 190 301 441 657
−61 −42 −67 −98 −146
1290 894 1417 2076 3093

 , |∆(19)〉 =


16.34
7.41
0.49
8.00
0.38

 cent.

The 10–ET scale is stable and separated by a large gap from the next stable choice 274-ET.
The 20–ET scale yields a reasonable approximation of the five lowest prime number harmonics

2, 3, 5, 7, and 11 by the intervals 14, 22, 32, 39, and 48 (∆(35) = 16.34 scents).
The 10–ET scale approximates reasonably well (∆(20) = 20.0 cents) elementary ratios 1/2, 3/2,

5/3, 11/5 consisting merely of the lowest prime numbers (except for 7).
There are several 20–ET scales representing well five ratios, e.g. 2/1, 3/1, 10/9, 11s/10, 11/7

(∆ = 12 cent).
We have shown that the µEuclidean algorithm can be used conveniently to identify ET tonal

scale that approximate several frequency ratios simultaneously. A measure is introduced to esti-
mate the quality of the approximation.

24The tonal content of the Stahnke scale, i.e. the set of numbers (6, 2, 5), can be obtained without referring
to the Stahnke number by choosing, for example, the harmonic seventh (7/4) as the basis and determining
approximations for the major third (5/4) and the octave (2/1) with respect to this basis. Inserting the
numbers 〈r| = (log7/4(7/4), log7/4(5/4), log7/4 (2/1)) we obtain

B(10)−1
=

( −5 −2 −6
25 10 31
−13 −5 16

)
, |∆(10)〉 =

( 37.41
1.34
13.69

)
cent.

The error associated to the first row of the matrix B−1 is quite large, roughly a quarter tone, since octaves
a poorly approximated within the Stahnke scale. The numbers of the second line of the matrix (25,10,31)
show the close connection between the Stahnke scale and the 31–tone ET system proposed by Huygens
and others, see also footnote 28. The error is less than 2 cent. The solution (-13,-5,-16) in the last line of
the matrix is not stable against a permutation of the input numbers.
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5. Summary and outlook

The Euler scale can be understood as a harmonic synthesis of the well–tempered scale and the
Bohlen–Pierce scale. It shares characteristic properties with traditional equiheptatonic scales in
African and oceanic music.

The µEuclidean algorithm is an integer relation algorithm going over identically into the ancient
Euclidean algorithm in the case of two dimensions. It can be used to approximate any finite set
of real numbers by fractions with a common ‘small’ denominator and, in particular, to identify
equidistant tunings which are pretty close to several given frequency ratios.

The special case of two dimensions is well explored. An essential question is which of the basic
techniques and findings can be extended to higher dimensions.

A more refined analysis of multi–dimensional continued fractions needs a generalization of
the concept of secondary convergents. The µEuclidean algorithm allows to approximate k real
numbers by by k + 1 integers. Multi–dimensional secondary convergents should be based on up
to 2k integers in order to approximate each real number individually by a rational number. The
integer numbers cannot be chosen freely but should be constrained by some currently unknown
structure. A topologically motivated ansatz is to look for a convenient norm for minimising the
distance between given real numbers and fractions with limited denominators.

In [16], the two–dimensional special linear transformations are used to explore well–formed
scales which are shown to be related to secondary convergents. The transformations considered
by Noll seem to be connected to the matrices B(ν) of the µEuclidean algorithm.

The characterization problem of diatonic scales within well–formed scales is investigated in [17].
For every chromatic scale a generalized diatonic scale is determined. What are the conditions for
specifying diatonic scales in higher dimensions and, even more, are some of the multi–dimensional
diatonic scales singled out like the major and minor scales within the usual 12–tone scale?

The concept of well–formed scales can be generalized from two to three dimensions [18]. The
essential idea is to implement algebraic structures in order to single out well–behaved scales. By
combining algebraic and topological structures a characterization of multi–dimensional secondary
convergents may be determined which, finally, might inspire some new music.

Appendix. Intervals and continued fractions

Let a be a positive real number characterizing a tonal scale. In the following
a = 2 octavian scale
a = 1

2(1 +
√

5) = 1.618 . . . Chowning scale
a = 3 Bohlen–Pierce scale
a = 1.9560685 Stahnke scale
a = e = 2.718 . . . Euler scale

are considered.
A frequency ratio f/f0 = p is called representable by an integer interval n if there exists an

integer N such that

p = a(n+ε)/N

where ε is a small real number (|ε| < 1).
For p = am (m = 1, 2, 3, . . . ), a (trivial) solution exists if n = mN . In this case ε = 0.
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Otherwise, consider the (equivalent) equation

n+ ε

N
=

log p
log a

showing that the problem can be reduced to find a fractional approximation n/N of the real
number log p/ log a. Note that the ratio log p/ log a is independent of the basis of the logarithm.
By identifying log = loga the ratio can be written log p/ log a = loga p since loga a = 1.

A generalization is to approximate several frequency ratios simultaneously by one tonal scale.
The frequency ratios p1, p2, . . . , pk are called representable by the integer intervals

np1 , np2 , . . . , npk
if there exists a common integer N such that

p1 = a(np1+εp1 )/N , p2 = a(np2+εp2 )/N , . . . , pk = a(npk
+εpk

)/N

where εp1 , εp2 , . . . , εpk
are small real numbers.

These equations are equivalent to

np1 + εp1
N

=
log p1

log a
,

np2 + εp2
N

=
log p2

log a
, . . . ,

npk
+ εpk

N
=

log pk
log a

.

Again, the problem can be reduced to find fractional approximations of positive real numbers.25

Continued fractions. An important application of the theory of continued fractions is the
approximation of real numbers by ‘simple’ rational numbers. Some results are summarized in the
following. For more details and proofs, in particular, we refer to text books on number theory.

Any positive real number r can be represented by a continued fraction

r = k0 +
1

k1 +
1

k2 +
1

k3 + . . .

= [k0, k1, k2, k3, . . . ]

where k0, k1, k2, k3, . . . are positive integers determinable by the Euclidean algorithm if applied
to the numbers r, and 1. The n–th convergent of the number r is defined as a continued fraction
terminated after the n–th entry

r ' [k0, k1, k2, . . . , kn] =
pn
qn

where pn, qn are integers. Even convergents are smaller than r and odd convergents larger

p0

q0
<
p2

q2
< · · · ≤ r ≤ · · · < p3

q3
<
p1

q1
.

25 The Editors pointed our attention to the authors of [21] who also explored 1–dimensional continued
fractions for analysing non–standard tonal scales.
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Reasonable approximations can also be obtained if the last entry of a convergent is reduced. The
fractions

[k0, k1, . . . , kn−1, k] =
k pn−1 + pn−2

k qn−1 + qn−2
, 1 ≤ k < kn

are called the n–th secondary convergents of the number r.26 The n–th convergent has kn − 1
secondary convergents. Even secondary convergents are located between two successive even
convergents

p2n

q2n
< [k0, . . . , k2n+1, 1] < · · · < [k0, . . . , k2n+1, k2n+2 − 1] <

p2n+2

q2n+2

and odd secondary convergents are located between two successive odd convergents

p2n+3

q2n+3
< [k0, . . . , k2n+2, k2n+3 − 1] < · · · < [k0, . . . , k2n+2, 1] <

p2n+1

q2n+1
.

A best approximation of a real number r > 0 is defined as a fraction with a limited denominator.
The following theorem is due to Lagrange:

If a fraction a/b is a best approximation of a real number r > 0, then a/b is a convergent or
a secondary convergent. In other words, all best approximations of r are either convergents or
secondary convergents.

If there exist integer approximations for two harmonics

p1 = a(n1+ε1)/N , p2 = a(n2+ε2)/N

then for their product and their ratio there exist integer approximations in the same tonal scale
since

p1p2 = a(n1+n2+ε1+ε2)/N , p1/p2 ' a(n1−n2+ε1−ε2)/N

or, equivalently,

n1 + n2 + ε1 + ε2
N

=
ln(p1p2)

ln a
,

n1 − n2 + ε1 − ε2
N

=
ln(p1/p2)

ln a

i.e. the harmonics p1p2 and p1/p2 correspond to the intervals n1 ± n2.
The error of the product (fraction) is given by the sum ε1 + ε2 (difference ε1 − ε2) of the

individual errors ε1 and ε2.
A best approximation of a product or a fraction may not be sufficient practically, see footnote 6

in Section 2 and the example considered there.
Within the approach of best approximations it is sufficient to consider prime–number valued

harmonics p1, p2, . . . , pk, since any harmonic n can be written as a product of prime numbers,
n = pn1

1 . . . pnk

k where the numbers n1, . . . nk stand for the multiplicities of the prime numbers.

26The right hand side of the equation is well–defined if the quantities p−2 = q−1 = 0, p−1 = q−2 = 1 are
introduced.



21

In practical applications the individual errors should not be too large. At least the condition

|εp1 |+ |εp2 |+ · · ·+ |εpk
| < 1

should be fulfilled by the errors εp1 , εp2 , . . . , εpk
of the individual harmonics to avoid a non–unique

interval mapping if products/ratios of the harmonics are considered.

Octavian scale. The 3rd harmonic can be approximated by fractional powers of the 2nd
harmonic, 3 ≈ 2n/N . To find good values for the fraction n/N consider the continued fraction
expansion

log2 3 ' [1, 1, 1, 2, 2, 3, 1] =̂
{

1
1
,
2
1
,
3
2
,
8
5
,
19
12
,
65
41
,
84
53

}
.

The sequence of fractions on the right hand side of the sign =̂ yield approximations of increasing
accuracy to the number on the left hand side, log2 3. The octave may well be partitioned in
N = 5, 12, 41, 53 intervals and the 3rd harmonic27 corresponds to the interval 8, 19, 65 or 84,
respectively. The choice N = 12 selects the well–tempered scale and N = 5 characterizes the
5–tone equal tempered scale often used in traditional African music.

Chowning scale. In his composition Stria (premiered in 1977) John Chowning used a scale
based on the Golden Ratio

p = χn/9, χ =
1 +
√

5
2

= 1.618 . . .

see [19], [20].
From the continued fraction expansion

logχ 2 ' [1, 2, 3, 1, 2] =̂
{

1
1
,
3
2
,
10
7
,
13
9
,
36
25

}
it can be read off that a 9–tone ET scale yields a best approximation of octaves.

Bohlen–Pierce scale. The scale

p = 3n/13

yields best approximations of the 3rd, 5th, and 7th harmonic since in the continued fraction
expansions (log3 3 = 1 = 13/13)

log3 5 ' [1, 2, 6, 1, 1, 1] =̂
{

1
1
,
3
2
,
19
13
,
22
15
,
41
28
,
63
43

}
,

log3 7 ' [1, 1, 3, 2, 1, 2] =̂
{

1
1
,
2
1
,
7
4
,
16
9
,
23
13
,
62
35

}
.

27The 3rd harmonic is nothing but a fifth (3/2) on top of an octave (2/1) since 3 = (2/1)(3/2).
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there is the common denominator N = 13.

Stahnke scale. Let s = 1.9560685 be the Stahnke number. The first convergents of the 2nd,
5th, and 7th harmonics read

logs 2 ' [1, 30, 4] =̂
{

1
1
,
31
30
,
125
121

}
,

logs 5 ' [2, 2, 1, 1, 32] =̂
{

2
1
,
5
2
,
7
3
,
12
5
,
391
163

}
,

logs 7 ' [2, 1, 9, 34] =̂
{

2
1
,
3
1
,
29
10
,
989
341

}
.

There is a common denominator N = 30 leading to the best approximations

logs 2 ' 31
30

=
n2

N
, logs 5 ' 12

5
=

72
30

=
n5

N
, logs 7 ' 29

10
=

87
30

=
n7

N
.

The quality of the approximations is very high because the denominators of the next convergents
increase considerably.28

By taking ratios of the harmonics we find

logs
5
22
' 72

30
− 62

30
=

10
30

=
1
3
, logs

7
22
' 87

30
− 62

30
=

25
30

=
5
6

and both results are again best approximations because they appear in the continued fraction
expansions of the major third and the harmonic seventh

logs
5
4
' [0, 3, 148] =̂

{
0
1
,
1
3
,
148
445

}
,

logs
7
4
' [0, 1, 5, 36] =̂

{
0
1
,
1
1
,
5
6
,
181
217

}
.

In other words, the modified Stahnke scale sn/30 approximates very well the 2nd harmonic
(difference ∆ = 0.3 cent), the 5th harmonic (∆ = 1.4 cent), and the 7th harmonic (∆ = 0.3
cent).

Historically, the Stahnke scale (characterized by the exponent n/12 instead of n/30) was de-
veloped as a non–octaving scale which approximates optimally the major third and the harmonic
seventh (see Section 1, the intervals n = 4 and n = 10 in Table A1, and footnote 24).

Euler scale. The first convergents of the natural logarithms of the first prime number–valued

28The basic interval s1/30 = 1.02262 . . . ( =̂ 38.718 cent) is almost identical to the basic interval 21/31 =
1.02261 . . . ( =̂ 38.710 cent) of the 31–tone ET scale considered already by Huygens (and others).
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harmonics read

ln 2 ' [0, 1, 2, 3, 1, 6] =̂
{

0
1
,
1
1
,
2
3
,

7
10
,

9
13
,
61
88

}
ln 3 ' [1, 10, 7, 9, 2, 2] =̂

{
1
1
,
11
10
,
78
71
,
713
649

,
1504
1369

,
3721
3387

}
ln 5 ' [1, 1, 1, 1, 1, 3, 1, 1, 1] =̂

{
1
1
,
2
1
,
3
2
,
5
3
,
8
5
,
29
18
,
37
23
,
66
41
,
103
64

}
ln 7 ' [1, 1, 17, 2, 19, 1] =̂

{
1
1
,
2
1
,
35
18
,
72
37
,
1403
721

,
1475
758

}
ln 11 ' [2, 2, 1, 1, 18, 2] =̂

{
2
1
,
5
2
,
7
3
,
12
5
,
223
93

,
458
191

}
Thus, for the denominator N = 10 the best approximations of the 2nd, 3rd, 5th, and 11th
harmonics read

n2

N
' 7

10
,

n3

N
' 11

10
,

n5

N
' 8

5
=

16
10
,

n11

N
' 12

5
=

24
10

These findings are a mathematical explanation of the stars assigned to the harmonics 2, 3, 5,
and 11 in Table 1 (Euler scale).

There are other ‘common’ denominators. For example, N = 3387 yields also a best approxima-
tions of the 2nd, 3rd, 5th, and 11th harmonics since they can be approximated by the convergents

n2

N
' 2

3
=

2258
3387

,
n3

N
' 3721

3387
,

n5

N
' 5

3
=

6545
3387

,
n11

N
' 7

3
=

7903
3387

.

Although the the choice N = 3387 makes sense mathematically it should be pointed out that it is
almost useless practically since it is subdividing octaves into very tiny units (1200 log2 e

1/3387 ≈
0.511 cent). Moreover, it leads to less accurate approximations of the 2nd, the 5th, and the 11th
harmonic.

The 7th harmonic can be approximated by the 3rd secondary convergent

ln 7 ' [1, 1, 9] =
19
10
.

However, the approximation is poor since 10 ln 7 = 19.4591 . . . is located in the ‘neutral’ region
between the intervals 19 and 20, see Table 1.

By purely considering convergents it is not possible to derive the result obtained with the
µEuclidean algorithm that the prime–numbered harmonics 2, 3, 5, 11, and 7 can reasonably be
represented within the 20–tone ET Euler scale. In this scale the 7th harmonic is represented by
the 39th interval (see the fourth to last paragraph of Section 4 and footnote 5). The continued
fraction [1,1,19]=39/20 does not belong to the convergents or secondary convergents of ln 7.29

Convergents of the lowest intervals. Continued fraction expansions may be useful in
identifying approximate frequency ratios for the lowest intervals. In Table A1 different tonal scales

29This observation motivated us to look for an alternative to 1–dimensional continued fractions and led
us, eventually, to the µEuclidean algorithm.
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12–tone ET Chowning Bohlen-Pierce Stahnke Euler
n 2n/12 χn/9 3n/13 sn/12 en/10

1
{

1
1 ,

17
16 ,

18
17 ,

89
84

} {
1
1 ,

19
18 ,

77
73 ,

96
91

} {
1
1 ,

12
11 ,

25
23 ,

37
34

} {
1
1 ,

18
17 ,

37
35

} {
1
1 ,

10
9 ,

11
10 ,

21
19

}
2

{
1
1 ,

9
8 ,

55
49

} {
1
1 ,

9
8 ,

10
9 ,

69
62

} {
1
1 ,

6
5 ,

13
11 ,

45
38

} {
1
1 ,

9
8 ,

19
17 ,

85
76

} {
1
1 ,

5
4 ,

6
5 ,

11
9

}
3

{
1
1 ,

6
5 ,

19
16 ,

25
21

} {
1
1 ,

6
5 ,

7
6 ,

20
17

} {
1
1 ,

4
3 ,

9
7 ,

58
45

} {
1
1 ,

6
5 ,

13
11 ,

123
104

} {
1
1 ,

3
2 ,

4
3 ,

27
20

}
4

{
1
1 ,

4
3 ,

5
4 ,

29
23

} {
1
1 ,

5
4 ,

26
21 ,

135
109

} {
1
1 ,

3
2 ,

7
5 ,

122
87

} {
1
1 ,

4
3 ,

5
4 ,

494
395

} {
1
1 ,

3
2 ,

91
61

}
5

{
1
1 ,

3
2 ,

4
3 ,

295
221

} {
1
1 ,

4
3 ,

13
10 ,

17
13

} {
1
1 ,

2
1 ,

3
2 ,

29
19

} {
1
1 ,

4
3 ,

37
28 ,

41
31

} {
1
1 ,

2
1 ,

3
2 ,

5
3 ,

28
17

}
6

{
1
1 ,

3
2 ,

7
5 ,

17
12

} {
1
1 ,

3
2 ,

4
3 ,

7
5

} {
1
1 ,

2
1 ,

3
2 ,

5
3 ,

88
53

} {
1
1 ,

3
2 ,

4
3 ,

7
5

} {
1
1 ,

2
1 ,

9
5 ,

11
6 ,

20
11

}
7

{
1
1 ,

3
2 ,

442
295

} {
1
1 ,

3
2 ,

13
9 ,

16
11

} {
1
1 ,

2
1 ,

9
5 ,

47
26

} {
1
1 ,

3
2 ,

34
23 ,

71
48

} {
2
1 ,

145
72

}
8

{
1
1 ,

2
1 ,

3
2 ,

8
5 ,

19
12

} {
1
1 ,

2
1 ,

3
2 ,

20
13

} {
1
1 ,

2
1 ,

57
29

} {
1
1 ,

2
1 ,

3
2 ,

11
7

} {
2
1 ,

9
4 ,

20
9 ,

69
31

}
9

{
1
1 ,

2
1 ,

5
3 ,

37
22

} {
1
1 ,

2
1 ,

3
2 ,

5
3 ,

8
5

} {
2
1 ,

15
7 ,

77
36

} {
1
1 ,

2
1 ,

3
2 ,

5
3

} {
2
1 ,

5
2 ,

27
11 ,

32
13

}
10

{
1
1 ,

2
1 ,

7
4 ,

9
5 ,

16
9

} {
1
1 ,

2
1 ,

5
3 ,

12
7

} {
2
1 ,

7
3 ,

149
64

} {
1
1 ,

2
1 ,

5
3 ,

7
4

} {
2
1 ,

3
1 ,

8
3 ,

11
4

}
11

{
1
1 ,

2
1 ,

15
8 ,

17
9

} {
1
1 ,

2
1 ,

9
5 ,

551
306

} {
2
1 ,

3
1 ,

5
2 ,

33
13 ,

38
15

} {
1
1 ,

2
1 ,

11
6 ,

13
7

} {
3
1 ,

721
240

}
Table A1. The first convergents of the intervals n = 1, 2, . . . , 11 for different scales. χ = (1 +

√
5)/2 =

1.618 . . . is the Golden Ratio, s = 1.9560685 the Stahnke number, and e = 2.718 . . . the Euler number.
The first four convergents are noted, in general. In some cases less (or more) convergents are listed to
indicate that a continued fraction expansion is converging well (or only slowly).

are compared. The accuracy of a convergent is the higher the larger the difference is between its
denominator and the denominator of the next convergent. For example, the approximation 3/2
for the 7th interval of the 12–tone (ET) scale is very good since the next convergent 442/295 has
a much larger denominator.

It should be noted that the fractions f/f0 associated to the intervals n in Table 2 appear also
in the list of convergents of the Euler scale in Table A1.
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